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William H. Cunningham
The Coming of the Matroids 143–153

Alexander Schrijver
On the History of the Shortest Path Problem 155–167

Alexander Schrijver
On the History of the Transportation
and Maximum Flow Problems 169–180

William R. Pulleyblank
Edmonds, Matching
and the Birth of Polyhedral Combinatorics 181–197

Thomas L. Gertzen and Martin Grötschel
Flinders Petrie, the Travelling Salesman Problem,
and the Beginning of Mathematical Modeling
in Archaeology 199–210

Rolf H. Möhring
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Preface

When in danger of turning this preface into an essay about why it is important

to know the history of optimization, I remembered my favorite Antoine de

Saint-Exupery quote: “If you want to build a ship, don’t drum up the men to

gather wood, divide the work and give orders. Instead, teach them to yearn

for the vast and endless sea.” Optimization history is not just important; it is

simply fascinating, thrilling, funny, and full of surprises. This book makes an

attempt to get this view of history across by asking questions such as:

• Did Newton create the Newton method?

• Has Gauss imported Gauss elimination from China?

• Who invented interior point methods?

• Was the Kuhn-Tucker theorem of 1951 already proved in 1939?

• Did the Hungarian algorithm originate in Budapest, Princeton or Berlin?

• Who built the first program-controlled computing machine in the world?

• Was the term NP-complete created by a vote initiated by Don Knuth?

• Did the Cold War have an influence on the maximum principle?

• Was the discovery of the max-flow min-cut theorem a result of the Second

World War?

• Did Voronoi invent Voronoi diagrams?

• Were regular matroids characterized by a code breaking chemist?

• Did an archaeologist invent the Hamming distance and the TSP?

• What has the Kepler conjecture to do with “mathematical philosophy”?

• Have you ever heard of an Italian named Wilfried Fritz, born in France and

deceased in Switzerland?

• What does the electrification of South-Moravia have to do with spanning

trees?

• Did Euler cheat Russia and Prussia concerning stolen horses?

• And why did Omar Khayyam compute the third convergent of a continued

fraction?

Interested? How many of these questions can you answer? Some of them touch

fundamental issues of optimization, others appear anecdotal or even somewhat

obscure, but there may be more behind them than you think. The forty-one

articles in this book and my introductions to the sections provide some full and

some partial answers. Just glance through the book, and I hope you will get

stuck and start reading.

Documenta Mathematica · Extra Volume ISMP (2012) 1–2
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Optimisation and Utility Functions

Walter Schachermayer

2010 Mathematics Subject Classification: 91B16, 91B24
Keywords and Phrases: Portfolio optimisation, utility functions

The story begins in St. Petersburg in 1738. There Daniel Bernoulli proposed a
solution to the “St. Petersburg Paradox” by introducing the notion of a utility

function.
The problem is formulated in somewhat flowery terms as a game. It was

proposed by Nicholas Bernoulli, a cousin of Daniel, in a letter from 1713 to
Pierre Raymond de Montmort. Suppose I offer you a random sum of money
where the amount is determined from subsequent tosses of a fair coin in the
following way. The payoff equals 2n ducats if the first heads appears on the
n’th toss. Of course, this event has probability 2−n, so that the expected value
of the payoff equals

1
2
× 2 + 1

4
× 4 + . . .+ 1

2n
2n + . . . = ∞. (1)

Here is the question: how much would you be willing to pay to me as a fixed

price for obtaining this kind of lottery ticket?
It is instructive to discuss this question with students in a class and to ask

for bids. One rarely gets a bid higher than, say, 10 ducats.
This is remarkably far away from the expected payoff of the game which

is infinity. Clever students quickly ask a crucial question: are we allowed to
play this game repeatedly? This would change the situation dramatically! The
law of large numbers, which was already well understood in Daniel Bernoulli’s
times, at least in its weak form, tells you that in the long run the average win
per game would indeed increase to infinity. Hence in this case, clever students
would be willing to pay quite an elevated fixed price for the game.

But the flavor of the problem is that you are only offered to play the game
once. How to determine a reasonable value of the game?
Daniel Bernoulli proposed not to consider the nominal amount of money but

rather to transform the money scale onto a different scale, namely the utility

which a person draws from the money. For a good historic account we refer
to [4]. Daniel Bernoulli proposed to take U(x) := log(x) as a measure of the
utility of having an amount of x ducats. And he gives good reasons for this
choice: think of a person, an “economic agent” in todays economic lingo, who

Documenta Mathematica · Extra Volume ISMP (2012) 455–460



456 Walter Schachermayer

manages to increase her initial wealth w > 0 by 10%. Measuring utility by the
logarithm then yields that the increase in utility is independent of w, namely
log( 11w

10
)− log(w) = log( 11

10
).

Bernoulli therefore passes from the expected nominal amount (1) of the game
to the expected utility of the wealth of an agent after receiving the random
amount of the game, i.e.,

1
2
log(w − c+ 2) + 1

4
log(w − c+ 4) + . . .+ 1

2n
log(w − c+ 2n) + . . . , (2)

where w denotes the initial wealth of the agent and c the price she has to pay
for the game. Of course, this sum now converges. For example, if w − c = 0,
the sum equals log(4). This allows for the following interpretation: suppose the
initial wealth of the agent equals w = 4. Then c = 4 would be a reasonable
price for the game, as in this case the agent who uses expected log-utility as a
valuation of the payoff, is indifferent between the following two possibilities:
(1) not playing the game in which case the wealth remains at w = 4, yielding

a certain utility of log(4).
(2) Playing the game and paying c = 4 for this opportunity. This yields, by

the above calculation, also an expected utility of log(4).
The above method today is known as “utility indifference pricing”. We have

illustrated it for initial wealth w = 4, as the calculations are particularly easy
for this special value. But, of course, the same reasoning applies to general
values of w. It is immediate to verify that this pricing rule yields a price c(w)
in dependence of the initial wealth w which is increasing in w. In economic terms
this means that, the richer an agent is, the more she is willing to pay for the
above game. This does make sense economically. In any case, the introduction
of utility functions opened a perspective of dealing with the “St. Petersburg
Paradox” in a logically consistent way.

Let us now make a big jump from 18’th century St. Petersburg to Vienna
in the 1930’s. The young Karl Menger started with a number of even younger
mathematical geniuses the “Mathematische Colloquium”. Participants were,
among others, Kurt Gödel, Olga Taussky, Abraham Wald, Franz Alt. There
also came international visitors, e.g., John von Neumann or Georg Nöbeling. In
this colloquium a wide range of mathematical problems were tackled. Inspired
by an open-minded banker, Karl Schlesinger, the Colloquium also dealt with
a basic economic question: How are prices formed in a competitive economy?
As a toy model think about a market place where “many” consumers can buy
apples, bananas, and citruses from “many” merchants. We assume that the
consumers are well informed, that they want to get the best deal for their
money, and that there are no transaction costs.
This assumption implies already that the prices πa, πb, πc of these goods have

to be equal, for each merchant. Indeed, otherwise merchants offering higher
prices than their competitors could not sell their fruits.
For each of the consumers the market prices πa, πb, πc are given and, de-

pending on their preferences and budgets, they make their buying decisions
as functions of (πa, πb, πc). On the other hand, the merchants decide on these

Documenta Mathematica · Extra Volume ISMP (2012) 455–460
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prices. For example, if the current prices are such that the apples are imme-
diately sold out, while few people want to buy the bananas, it seems obvious
that the price πa should go up, while πb should go down. This seems quite
convincing if we only have apples and bananas, but if there are more than two
goods, it is not so obvious any more how the prices for the apples and the
bananas relate to the demand for citruses.
This question was already treated some 50 years earlier by Léon Walras,

who was Professor of economics in Lausanne. He modeled the situation by
assuming that each agent is endowed with an initial wealth w and a utility

function U assigning to each combination (xa, xb, xc) of apples, bananas, and
citruses a real number U(xa, xb, xc). For given prices (πa, πb, πc), each of the
agents optimises her “portfolio” (xa, xb, xc) of apples, bananas, and citruses.
In this setting, we call a system of prices (πa, πb, πc) an equilibrium if “markets
clear”, i.e., if for each of the three goods the total demand equals the total
supply.
The obvious question is: Is there an equilibrium? Is it unique?
Léon Walras transformed the above collection of optimisation problems,

which each of the “many” agents has to solve for her specific endowment and
utility function, into a set of equations by setting the relevant partial deriva-
tives zero. And then he simply counted the resulting number of equations and
unknowns and noted that they are equal. At this point he concluded – more or
less tacitly – that there must be a solution which, of course, should be unique
as one can read in his paper “Die Gleichungen des Tausches” from 1875.
But, of course, in the 1930’s such a reasoning did not meet the standards

of a “Mathematische Colloquium” any more. Abraham Wald noticed that the
question of existence of an equilibrium has to be tackled as a fixed point problem
and eventually reduced it to an application of Brouwer’s fixed point theorem.
He gave a talk on this in the Colloquium and the paper was announced to
appear in the spring of 1938. However, the paper was lost in the turmoil of
the “Anschluss” of Austria, when the Colloquium abruptly ended, and most
participants had other worries, namely organising their emigration. It was only
after the war that this topic was brought up again with great success, notably
by the eminent economists Kenneth Arrow and Gerard Debreu.
Finally, we make one more big jump in time and space, this time to Boston

in the late 1960’s. The famous economist Paul Samuelson at MIT had become
interested in the problem of option pricing. Triggered by a question of Jim
Savage, Paul Samuelson had re-discovered the dissertation of Louis Bachelier,
entitled “Théorie de la spéculation”, which Bachelier had defended in 1900 in
Paris. Henri Poincaré was a member of the jury. In his dissertation Bachelier
had introduced the concept of a “Brownian motion” (this is today’s terminol-
ogy) as a model for the price process of financial assets. He thus anticipated
the work of Albert Einstein (1905) and Marian Smoluchowski (1906) who in-
dependently applied this concept in the context of thermodynamics.
Paul Samuelson proposed a slight variant of Bachelier’s model, namely
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putting the Brownian motion W on an exponential scale, i.e.,

dSt = Stµdt+ StσdWt, 0 ≤ t ≤ T. (3)

Here St denotes the price of a “stock” (e.g. a share of Google) at time t. The
initial value S0 is known and the above stochastic differential equation models
the evolution of the stock price in time. The parameter µ corresponds to the
drift of the process, while σ > 0 is the “volatility” of the stock price, which
models the impact of the stochastic influence of the Brownian motion W .
This model is called the “Black-Scholes model” today, as Fisher Black and

Myron Scholes managed in 1973 to obtain a pricing formula for options on the
stock S which is solely based on the “principle of no arbitrage”. This result
was obtained simultaneously by Robert Merton, a student of Paul Samuelson.
The “Black-Scholes formula” earned Myron Scholes and Robert Merton a No-
bel prize in Economics in 1997 (Fisher Black unfortunately had passed away
already in 1995).

Here we want to focus on a slightly different aspect of Robert Merton’s work,
namely dynamic portfolio optimisation, which he started to investigate in the
late sixties [3]. Imagine an investor who has the choice of investing either into a
stock which is modeled by (3) above, or into a bond which earns a deterministic
fixed interest rate, which we may assume (without loss of generality) to be
simply zero. How much of her money should she invest into the stock and how
much into the bond? The dynamic aspect of the problem is that the investor
can – and, in fact, should – rebalance her portfolio in continuous time, i.e., at
every moment.
To tackle this problem, Merton fixed a utility function U : R+ → R modeling

the risk aversion of the investor. A typical choice is the “power utility”

U(x) = xγ

γ , x > 0, (4)

where γ is a parameter in ]−∞, 1[ \ {0}. Of course, the case γ = 0 corresponds
to the logarithmic utility. One thus may well-define the problem of maximising

the expected utility of terminal wealth at a fixed time T , where we optimise over
all trading strategies. A similar problem can be formulated when you allow for
consumption in continuous time.
Here is the beautiful result by Robert Merton. Fixing the model (3) and the

utility function (4), the optimal strategy consists of investing a fixed fraction

m of one’s total wealth into the stock (and the remaining funds into the bond).
The value m of this fraction can be explicitly calculated from the parameters
appearing in (3) and (4).

To visualize things suppose that m = 1
2
, so that the investor always puts half

of her money into the stock and the other half into the bond. This implies that
the investor sells stocks, when their prices go up, and buys them when they go
down. A remarkable feature is that she should do so in continuous time which
– in view of wellknown properties of Brownian trajectories – implies that the
total volume of her trading is almost surely infinite, during each interval of
time!

Documenta Mathematica · Extra Volume ISMP (2012) 455–460
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The method of Merton is dynamic programming. He defines the Hamilton–
Jacobi–Bellman value-function corresponding to the above problem. In this
setting he manages to explicitly solve the PDE which is satisfied by this value-
function.

Of course, this so-called “primal method” is not confined to the special set-
ting analysed by Robert Merton. It can be – and was – extended to many
variants and generalisations of the above situation.
There is also a dual approach to this family of problems which was initi-

ated in a different context by J.-M. Bismut [1]. In the Mathematical Finance
community this approach is also called the “martingale method”. Speaking
abstractly, Merton’s problem is just a convex optimisation problem over some
infinite-dimensional set, namely the set of all “admissible” trading strategies.
As is very wellknown, one may associate to each convex optimisation prob-
lem a “dual” problem, at least formally. The method consists in introducing
(an infinite number of) Lagrange multipliers and to find a saddle point of the
resulting Lagrangian function. This leads to an application of the minmax
theorem. Eventually one has to optimize the Legendre transform of U over an
appropriate “polar” set.
To make this general route mathematically precise, one has to identify appro-

priate regularity conditions, which make sure that things really work as they
should, e.g., existence and uniqueness of the primal and dual optimizer as well
as their differential relations. In the present case, there are two aspects of regu-
larity conditions: on the one hand side on the model of the stock price process,
e.g., (3), and on the other hand on the choice of the utility function, e.g., (4).
In order to develop a better understanding of the nature of the problem, from
a mathematical as well as from an economic point of view, it is desirable to
identify the natural regularity assumptions. Ideally, they should be necessary
and sufficient for a good duality theory to hold true.

In [2] this question was answered in the following way. As regards the choice
of the model S for the stock price process, virtually nothing has to be assumed,
except for its arbitrage freeness, which is very natural in the present context.
As regards the utility function U one has to impose the condition of “reasonable
asymptotic elasticity”,

lim sup
x→∞

xU
′(x)

U(x)
< 1, (5)

which is reminiscent of the ∆2 condition in the theory of Orlicz spaces. The
name “asymptotic elasticity” comes from the fact that the derivative U

′(x),
normalised by U(x) and x as in (5), is called the “elasticity” of U in eco-
nomics. To get a feeling for the significance of condition (5), note that for
a concave, increasing function U the above limit is always less than or equal
to 1. In the case of power utility (4) this limit equals γ < 1. Considering
U(x) = x

log(x) , for x > x0, we find an example where the above limit equals

1, i.e., a utility function U which fails to have “reasonable asymptotic elastic-
ity”.
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It turns out that condition (5) is a necessary and sufficient condition for the
duality theory to work in a satisfactory way. If it is violated, one can find a
stock price process S – in fact a rather simple and regular one – such that the
duality theory totally fails. On the other hand, if it holds true, the duality
theory, as well as existence and uniqueness of the primal and dual optimiser
etc, works out well, even for very general stock price processes S.

There is a lot of further research on its way on related issues of portfolio
optimisation. As an example, we mention the consideration of proportional
transaction costs (e.g., Tobin tax) in the above problem of choosing an opti-
mal dynamic portfolio. Of course, the most fruitful approach is the interplay
between primal and dual methods.
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